JSR110: JWSDL Proposed Final Draft Verson 1.0

Java™ APIs for WSDL
(JWSDL)

Technica comments to: j5r110-eg-disc@groups.yahoo.com

JSR-110 under Java Community Process

Vesion 1.0

Editors:
Matthew J. Duftler (duftler@us.ibm.com)
Paul Fremantle (pzf @uk.ibm.com)

Copyright IBM Corporation 2002 — All rights reserved
November 10, 2002

Page1 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

> WD

o o0

10.

11

13.

14.

Introduction..

L= o BT =41 1 S SPPR

Design Goals.
Out of Scope .

SYNEACHIC VAIIAITY ..ttt ettt e e saee s

= Tox (o YA Y/ o g =T = o SRR

REAAING DEFINITIONS........eieeieiiie e e e st e e e saee e e e seeeeesanneeeeeanns

Navigating DEfINITIONS.cccviiee i e e e e e e s nsbe e e e sraeeeensreeeeanns

WIITING DEFINITIONS.eeiee ittt s e e st e e e st e e e essteeeesnneenessnnneneeeanns

Programmatically Creating Definitions..........cccveiieiiiiiieiiie e s

E Xt NS ON AT G ECIUI ..ot ettt et et e e e e et e e e e e e e e e e e e e s eeeaaeeeeeeenms 10

EXEenSiDility ATtFTDULESoo e 12

D= o1 00 = T TSR 13

References

Page2 of 13

JSR110: JWSDL Proposed Final Draft

1. Introduction

Verson 1.0

The Web Services Decription Language [WSDL] is an XM L-based language for describing Web
sarvices. WSDL dlows devel opers to describe the inputs and outputs to an operation, the set of
operations that make up a service, the trangport and protocol information needed to access the service,
and the endpoints viawhich the service is accessible.

Java™ APIsfor WSDL [JWSDL] isan API for representing WSDL documentsin Java. This
document, together with the API JavaDacs, is the forma specification for Java Specification Request
110 (JSR-110). JSR-110 is being developed under the Java Community Process (see
http://www.jcp.org/jsr/detail/110.jsp) .

The expert group that developed this specification was composed of the following individuds:

Name Company E-mail
Rahul Bhargava Netscape Communications rahul technica @yahoo.com
Tim Blake Oradle Timothy.Blake@oracle.com
Roberto Chinnici Sun Microsystems, Inc. roberto.chinnici @sun.com
John P Crupi Sun Microsystems, Inc. John.Crupi @Sun.COM
*Matthew J. Duftler IBM duftler@us.ibm.com
*Paul Fremantle IBM pzf @uk.ibm.com
Pierre Gauthier Nortel Networks yaic@nortel networks.com
Simon Horrell Developmentor smonh@devel op.com
OisnHurley IONA Technologies PLC ohurley@iona.com
Tokuhisa Kadonaga Fujitsu Limited kado@sysrap.cs.fujitsu.co.jp
ChrisKdler Silverstream Software ckdler@silverstream.com
Rajesh Raman InterKed rraman@interkedl.com
Ad Sakda IONA Technologies PLC adi.saka a@iona.com
Krishna Sankar Cisco Systems ksankar @cisco.com
Mirodav Simek Systinet smek@idoox.com

Note: * indicates specification leads.

We borrowed much of the factory mechanism and the set/getFeature mechanism from the JAXP
specification, and we would like to acknowledge the JAXP authors for their quality work. We would
aso like to thank the authors of the WSDL specification for helping us to work through some of the
issues that came up. And ladtly, thanksto the many folks who adopted this work early, for their
feedback and suggestions.

2. Requirements

JWSDL isintended for use by developers of Web services tools and others who need to utilize WSDL
documentsin Java

JWSDL is designed to alow usersto read, modify, write, create and re-organize WSDL documentsin
memory. JWSDL is not designed to validate WSDL documents beyond syntactic validity. One use of
JWSDL isto develop atool that validates WSDL semantically.

JWSDL isdesigned for usein WSDL editorsand tools where a partial, incomplete or incorrect WSDL
document may requiire representation.

Page3 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

Although WSDL incorporates XML Schema expressions, MWSDL is not required to parse and
represent schema or schema types.

WSDL supports extensibility elements, w hich alow the language to be extended. WSDL must fully
support extensbility eements.

3. Design Goals

The design goals of this JSR are asfollows:

?? To specify APIsfor reading, writing, creating, and modifying WSDL definitions.

?? To specify APIsfor reading, writing, cregting, and modifying extensibility elements (both
those defined in the WSDL specification, and those defined by client applications.)

?? To specify interfaces for representing the extensibility elements defined in the WSDL
specification.

?? To define amechanism that alows reading, writing, and representing extensibility elements
for which no seridizers and/or deseridizers were defined.

?? To define a factory mechanism that alows JWSDL client code to be written independent of
any particular WSDL implementation.

?? To specify APIsthat are suitable for the building of WSDL tools and runtime infrastructure.

?? To define an API that supports WSDL -equivalence of read and written documents. That is, if
adocument is read into memory, and then written back out, the two documents should be
semanticaly equivalent. XML Processing Instructions and XML Comments may be lost in
this process.

?? Specify the conformance criteria for WSDL implementations.

This version of WSDL supports WSDL V1.1, based on the submission to the W3C dated 15" March
2001 (http:/Amww.w3.0rg/ TR/200/NOTE-wsdl-20010315). It is expected that changes in the WSDL
specification made by the W3C will be reflected in future versions of the JWSDL specification
through the workings of the Java Community Process.

4. Out of Scope

?? JWSDL does not provide support for querying/manipulating XML Schema. Any children of
<wsdl : t ypes> elements are treated as extenshility eements.

?? JWSDL does not provide for vaidating WSDL documents beyond syntactic validity (see
Section 5). One likely use of IWSDL isto develop atool that vaidates WSDL semanticaly.

5. Syntactic Validity

All the details of WSDL syntax are not explicitly defined in the current proposed WSDL
specification. This API specification expects the following behaviour from implementations.

Ordering

Implementations must support parsing WSDL that is in the correct order as specified by the WSDL
specification and the schema. Implementations may support reading incorrectly ordered definitions
without errors or exceptions. Implementations must write WSDL documents in the order specified by
the WSDL specification.

Page4 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

Extensibility Elements

The WSDL specification only alows extensibility eements under certain e ements. Any
implementation of WSDL must enforce that, and illega extensibility elements will cause an
exception. WSDL aso defines the type of each extensibility element through the registration process,
and s0 extensibility dements should only be recognized within the scope in which they are defined to
the IWSDL implementation. If an extensibility element that is registered in one place (e.g. Port) is
found in another where it is not registered (e.g. Binding), then it should be considered an utnknown
extengbility element and treated as such.

Referential Integrity

Properly formed WSDL documents should be complete - if there is a reference to an element, then
that element should exist. However, during tooling and creation, it may be necessary to manage
incomplete WSDL documents. Therefore, implementations should not enforce referentia integrity.

6. Factory Mechanism

One of the gods of this JSR isto alow applications to write WSDL client code, without requiring
specific knowledge of the particular implementation being used (with the obvious exception of
implementation-provided extensions).

An gpplication firgt obtains a WSDLFactory instance via the static newlnstance method of
WSDLFactory. The newlnstance method uses the following ordered lookup procedure to determine
the WSDLFactory implementation class to load:

?? Check the javax.wsdl.factory. WSDL Factory system property.

?? Check the lib/wsdl.properties file in the JRE directory. The key will have the same name as
the above system property.

?? Use the platform default vaue (will vary with implementations).

Note: Thereis aso a static newl nstance method that takes the fully-qudified class name of afactory
implementation as an argument, in which case the above procedure is not employed.

Once a WSDLFactory instance is obtained, the methods newDefinition, nemWWSDLReader,
newWSDLWriter, or newPopul atedExtensionRegistry can be invoked to create the desired objects.

The next several sections contain examples of using these methods to read, write, and
programmaticaly create WSDL definitions.

7. Reading Definitions

An goplication invokes the newWSDLReader method on a WSDLFactory to obtain a WSDLReader .
Once a WDLReader is obtained, one of the various readWSDL methods can be used to construct a
Definition object from a WSDL document. It is recommended that WSDLReader implementations
employ JAXP in the parsing of WSDL documents, so any JAXP-compliant XML parser can be used.

After obtaining a WSDLReader instance, and before invoking readWSDL, any desired features should
be enabled or disabled by invoking the satFeature method. All feature names must be fully-qudified,
Java package style. All names starting with javax.wsdl. are reserved for features defined by the
JWSDL specification. It is recommended that implementation-specific features be fully-qudified to
match the package name of that implementation. For example: com.abc.featureName.

The minimum features that must be supported by any implementation are:

Page5 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

Name Description Default Value
javax.wsdl.verbose If set to true, status messages true
will be displayed.
javax.wsdl.importDocuments | If set to true, imported true
WSDL documents will be
retrieved and processed.

If the javax.wsdl.verbose feature is enabled, status messages will be sent to the standard output stream
(i.e. Systemout). It is enabled by defaullt.

If the javax.wsdl.importDocuments feature is enabled, imported documents will be retrieved and
processed. It is enabled by default. When imported documents are retrieved and processed, the
imported items can be returned by queries on theimporting Definition. That is, when querying a
Definition, or someitem contained in a Definition, the returned item may be from a different
Definition, if other Definitions have been imported. Imported Definitions may be navigated to by
invoking the getlmports method on the importing Definition, and then querying the definition
property of the returned javax.wsdl.Import objects (will dways be null if the
javax.wsdl.importDocuments feature was disabled). Within any particular Definition graph, individua
items must only exist once. For example, if multiple Input and Output objects refer to the same
Message al those references must refer to the same Messageingance.

JWSDL’simport logic alows any type of document to beimported. However, WSDL isonly
capable of retrieving and processing WSDL documents. If another type of document isimported, such
as an XML Schema document, ajavax.wsdl.Import object will sill be created to represent that import;
the definition property of that Import object will smply be null.

The following is an example of how to use a WSDLReader to construct a Definitionthat representsthe
WSDL file named samplewsdl:

i mport javax.wsdl.*;

i mport javax.wsdl.factory.*;

i mport javax.wsdl . xni.*;
try

{
WBDLFactory factory = WBDLFact ory. new nst ance();

WEDLReader reader = factory. newSDLReader () ;

reader . set Feat ure(“j avax. wsdl . ver bose”, true);
reader. set Feat ure(“j avax. wsdl . i nport Docunent s”, true);

Definition def = reader.readWsDL(null, "sanple.wsdl");
}
catch (WBDLException e)

e.printStackTrace();
}

The first argument to readWSDL is an optiona context URI, which can be used to resolve the second
argument (also a URY), if the second argument is relative.

8. Navigating Definitions

Let's assume that the samplewsdl file referred to in the previous section contains the following:

<?xm version="1.0"?>

Page6 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

<defini ti ons nanme="St ockQuot eServi ce"
t ar get Nanespace="ur n: xn t oday- del ayed- quot es"
xm ns: tns="urn: xm t oday - del ayed- quot es"
xm ns="http://schemas. xm soap. or g/ wsdl /"
xm ns: xsd="ht t p: // www. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schenas. xm soap. or g/ wsdl / soap/ " >

<nessage nane="get Quot el nput">
<part nane="synbol" type="xsd:string"/>
</ nessage>

<nmessage name="get Quot eQut put ">

<part nane="quote" type="xsd:float"/>
</ nessage>

<port Type nane="Get Quote">
<oper at i on name="get Quot e" >
<i nput message="t ns: get Quot el nput"/>
<out put nessage="t ns: get Quot eQut put"/ >
</ operation>
</ port Type>

<bi ndi ng name="Get Quot eSoapBi ndi ng" type="tns: Get Quot e" >
<soap: bi ndi ng styl e="rpc"
transport="http://schemas. xm soap. or g/ soap/ http"/>
<oper at i on name="get Quot e" >
<soap: operation soapAction=""/>
<i nput >
<soap: body use="encoded"
encodi ngStyl e="http://schenmas. xnl soap. or g/ soap/ encodi ng/ "
nanespace="ur n: xni t oday- del ayed- quot es"/ >
</ i nput >
<out put >
<soap: body use="encoded"
encodi ngStyl e="http://schenmas. xnl soap. or g/ soap/ encodi ng/ "
nanespace="ur n: xni t oday- del ayed- quot es"/ >
</ out put >
</ oper ati on>
</ bi ndi ng>

<servi ce nane="St ockQuot eServi ce">
<port name="St ockQuot ePort" bi ndi ng="t ns: Get Quot eSoapBi ndi ng" >

<soap: address |l ocation="http://ww.fremantl e. org/ soap/ servlet/rpcrouter"/>
</ port >
</ servi ce>

</definitions>

The following is an example of navigeting the Definition to determine what operations are defined for
aparticular service:

Definition def = reader.readWsDL(null, "sanple.wsdl ");

String tns = "urn:xnltoday-del ayed- quot es";

Service service = def. get Service(new QNane(tns, "StockQuoteService"));
Port port = service.getPort("StockQotePort");

Bi ndi ng bi nding = port. getBinding();

Port Type port Type = bi ndi ng. get Port Type();

Li st operations = portType. get Operations();

Iterator oplterator = operations.iterator();

while (oplterator.hasNext())
Operation operation = (Operation)oplterator.next();

if (!operation.isUndefined())
{

Page7 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

System out . print| n(operation. get Nane());

}
}

Just “getQuote” should be displayed.

Thefollowing is an example of navigating the Definition to determine what messages are defined in a
WSDL definition:

Definition def = reader.readWsDL(nul |, "sanple.wsdl ");
Map nessages = def. get Messages();
Iterator meglterator = messages.values().iterator();

whil e (nsglterator. hasNext())
{

Message nmsg = (Message) nsglterator. next();
if (!nsg.isUndefined())

System out . printl n(nsg. get QNane());
}
}

Both the getQuotel nput and getQuoteOutput messages should be listed, within the urn:xmltoday-
ddayed-quotes namespace.

The “undefined” property defined on the operation and message objects indicates whether the
definition for the particular item was found or not. Fa example: If, within aWSDL document, an
<wsdl : i nput > element refers to a message whose definition cannot be found, a placeholder message
object will be created, and its undefined property will be set to true. A similar property aso exists on
PortType and Binding. WSDLWiters are required to examine this property when determining which
items to write out. The default value for the undefined property of Message, Operation, PortType, and
Binding istrue; when creating these items programmaticaly, the property must be set to false.

9. Writing Definitions

An gpplication invokes the neWWDLWriter method on a WSDLFactory to obtain a WSDLWriter.
Once a WDLWriter is obtained, one of the writeWSDL methods can be employed to write a
Definition out as a WSDL document to either ajava.io.Writer, or a java.io.OutputSream. All
WD LWriter implementations must examine the undefined property of Message, Operation,
PortType and Binding objects to determine which items should be written out. See the previous
section for mare information on the undefined property.

WSDLWriters are not required to be capable of writing out Definitions created by other WSDL
implementations (although some may have this capability.)

After obtaining aWSDLWriter instance, and before invoking writeWSDL, any desired features should
be enabled or disabled by invoking the setFeature method. There are no minimum features that must
be supported by implementations.

Thefollowing is an example of how to use a WSDLWriter to write a Definition to System.out:

WeDLFactory factory = WBDLFact ory. new nst ance();
WEDLWiter witer = factory. newWBDLWiter();

witer.witeWDL(def, Systemout);

Page8 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

If the definition was congtructed from the sample.wsdl file, the output should look basically the same
as the contents of that file. The formatting of the file may be different, but the elements and attributes
will be the same (dthough they may not appear in the same order).

Thereisaso a getDocument method defined on WSDLWiter. This method can be used to generate an
org.w3c.dom.Document from the specified Definition.

10. Programmatically Creating Definitions

An gpplication invokes the newDefinition method on a WSDLFactory to obtain anew instance of a
javax.wsdl.Definition. Once that definition is obtained, it serves as a factory that can be used to creete
the rest of the items that will make up the full definition. This specification does not mandate that
itemsbe created by the Definition they will eventually be added to. Nor does this specification
mandate that any item have precisaly one parent Definition (that is, implementations may alow items
to be added to more than one Definition.) A particular implementation may choose to require items to
be created by the Definition they will be added to, and/or to require that an item be added to only one
Definition. If either of these restrictions isimposed by an implementation, it should be clearly spdlled
out in that implementation’s documentation.

Thefollowing is an example that programmaticaly constructs a definition containing two messages
and a portType with one operation that uses those two messages:

WBDLFactory factory = WBDLFact ory. new nst ance() ;
Definition def = factory. newbDefinition();

String tns = "urn: xnl t oday-del ayed- quotes";
String xsd = "http://ww. w3. org/ 2001/ XM_Schena" ;
Part partl = def.createPart();

Part part2 = def.createPart();

Message nsgl = def. createMessage();

Message nsg2 = def. creat eMessage();

I nput input = def.createlnput();

Qut put output = def.createQutput();
Qperation operation = def.createQOperation();
Port Type port Type = def. createPort Type();

def . set QName(new QNane(tns, "StockQuoteService"));
def . set Tar get Nanespace(tns);

def . addNanmespace("tns", tns);

def . addNanespace("xsd", xsd);

part 1. set Name("synbol ");

part 1. set TypeNanme(new QNane(xsd, "string"));
nmsgl. set QName(new QNanme(tns, "get Quotelnput"));
nmsgl. addPart (partl);

nsgl. set Undefi ned(fal se);

def . addMessage(nsgl) ;

part 2. set Nane("quote");

part 2. set TypeNane(new QNane(xsd, "float"));
nsg2. set Nane(new QNane(tns, "get QuoteQutput"));
nsg2. addPart (part 2);

msg2. set Undef i ned(fal se);

def . addMessage(nsg2) ;

i nput . set Message(nsgl);

out put . set Message(nsg2) ;

oper ati on. set Narme(" get Quote");

operation. setl nput (input);

oper ati on. set Qut put (out put);

oper ati on. set Undefi ned(f al se);

port Type. set QNane(new QNane(tns, "Get Quote"));
port Type. addOper at i on(oper ati on);

Page9 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

port Type. set Undef i ned(f al se);
def . addPor t Type(port Type) ;

The items created in the above example should match those read from the ssmplewsdl file in the
earlier examples.

11. Extension Architecture

The extension architecture is designed to dlow an application to perform the same basic functions
with extengbility elements, as with native WSDL eements. That is, applications are able to read
extensionsinto memory, write extensions back out, query in-memory extensions, and
programmaticaly create extensions. This is made possible by a combination of interfaces and classes.

?? The ExtensibilityElement interface is used to represent extensions in memoary.

?? The ExtensonDeserializer interface is used to read extensions into memory.

?? The ExtensonSzializer interface is used to write extensions out.

?? The ExtensionRegistry classis used to hold the configuration information necessary to
determine which seridizers and deseridizers are to be used for handling which extensions.

All IWSDL implementations are required to support the WSDL specification-defined extensons.
That is, dl IWSDL implementations are required to support the “SOAP’, “HTTP’, and “MIME”
extensions. Implementations of the ExtensibilityElement interface are provided for each of the WSDL
specification-defined extensonsin javax.wsdl.extensions.soap.*, javax.wsdl.extensions.http.*, and
javax.wsdl.extensions.mime.*. In order to provide support for the specification-defined extensions,
implementations are required to implement the newPopul atedExtensi onRegistry method of
WSDLFactory. This method must return an instance of an ExtensonRegistry with
seridizers/deseridizers registered, and Java types mapped, for dl the WSDL specification-defined
extensons. The particular seridizers and deseridizersthat each implementation will useto handle
these specification-defined extensions are not mandated by this document.

An ExtensonRegistry can be set/retrieved on/from a Definition, and set/retrieved on/from a
WSDLReader. To add support for additiona extensions, an application must configure the
ExtensonRegigtry. If the ExtensionRegistry is being configured for the purpose of reading a document
that contains extensibility elements, the configured ExtensionRegistry should be set on the
WSDLReader prior to reading the document. If an ExtensionRegistry is set on the WSDLReader, the
Definition constructed by that WSDLReader will have that ExtensionRegistry set as the vaue of its
extensonRegistry property. In other words, whatever vaue is assigned to the extensonRegistry
property of a WSDLReader will be assgned as the vaue of the extensonRegistry property of al
Definitions constructed by that WSDLReader .

If the ExtensionRegigtry is being configured for the purpose of writing out a programmatically
congtructed definition that contains extensions, the configured ExtensionRegistry must be set asthe
value of the extensionRegistry property of the Definition prior to handing it off to a WSDLWriter.

There are three different types of configuration that can be done on an ExtensionRegistry:
?? Regigering a deseridizer for a particular extension.
?? Regigering aseridizer for aparticular extension.
?? Mapping an implementation class to a particular extension.
In most cases, dl three types of configuration will be done for every extension. Every WSDL

implementation is required to do this for al the WSDL specification-defined extensons, when the
newPopulatedExtensionRegistry method isinvoked. If an ExtensionRegistryisretrieved by smply

Page10 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

invoking ExtensionRegistry’ szero-argument constructor (i.e. new ExtensionRegistry()), it will not
have seridizers, deseridizers, or Java implementation classes mapped for any extensions.

The following examples are concerning a fictitious extensibility element named <abc: nmyExt >, where
the prefix “abc” is associated with the namespace URI “urn:def”. The Java class created to represent
thisextensionin memory iscaled ghi.Abc, and it implementsthe ExtensibilityElement interface (as it
is required to do, in order to be considered an extension). The <abc: nyExt > extengbility d ement may
only exigt as an immediate child of a<wsdl : servi ce> element. Thereisa ghi.AbcDeserializer class
which implements the ExtensionDeserializer interface, and is capable of reading an <abc: nyExt >
element, and populating anew instance of a ghi.Abc with the relevant information. Thereisdso a
ghi.AbcSerializer class which implements the ExtensonSerializer interface, and is capable of
guerying an instance of a ghi.Abc and seridizing the rlevant information in the form of a

<abc: nyExt > extenghbility dement.

/1 Oreate a new ExtensionRegistry.
Ext ensi onRegi stry ext Reg = new Extensi onRegi stry();
/1 Register the deserializer.
ext Reg. regi sterDeserial i zer (Service. cl ass,
new QNanme("urn: def", "nyExt"),
new ghi . AbcDeserializer());
/'l Register the serializer.
ext Reg. regi sterSerializer(Service.class,
new QName("urn: def", "nyExt"),
new ghi . AbcSerializer());
/1 Map the inplementation class to the extension type.
ext Reg. mapExt ensi onTypes(Ser vi ce. cl ass,
new QNanme("urn: def", "nyExt"),,
ghi . Abc. cl ass);

Note that in all three of the above ExtensionRegistry method invocations, the Service.class argument
indicates that the extension can exist as a child of a <wsdl : ser vi ce> element.

For every WSDL eement capable of containing extengbility elements, its corresponding javax.wsdl.*
interface has two methods to handle the extensons. addExtensi bilityElement, and
getExtensibilityElements The addExtensibilityElement method takes an ingtance of an
ExtensibilityElement, and the getExtensibilityElements method returns a List whose items are of type
Extens bilityElement.

If aWSDL document containing a <wsd! : ser vi ce> element wasread in, and the <wsd! : servi ce>
element contained an <abc: nyExt > dement as an immediate child, the list returned from an
invocation of the getExtensi bilityElements method on that Service object would contain one item: a
instance of a ghi.Abc.

The following is an example of retrieving this ghi.Abc object:

Definition def = ...

Service svc = def.getService(...);

Li st extEl ements = svc. get ExtensibilityE enents();

ghi . Abc = (ghi. Abc)ext El enent s. get (0);
The following is an example of programmaticaly creeting an instance of a ghi.Abc, and addingittoa
Service object:

Service svc = def.createService();

ghi . Abc anExt = (ghi. Abc)ext Reg. cr eat eExt ensi on(Servi ce. cl ass,

new QName("urn:def", "nyExt"));

/1 Now configure the Abc instance...

Pagell of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

/1 Then add it to the Service object.
svc. addExt ensi bi | i t yEl enent (anExt) ;

The createExtension method is used to programmatically create extensions so that gpplications can
create extensions without knowing the implementing class. Thisis particularly relevant when dedling
with extensions that have well-known interfaces to represent them, such as the WSDL specification-
defined extensions.

The following is an example of programmaticdly creating an ingtance of a class which implements
the SOAPBInding interface, without knowing the implementing class:

SOAPBI ndi ng soapBi ndi ng =
(SOAPBI ndi ng) ext Reg. cr eat eExt ensi on(Bi ndi ng. cl ass,
new QNane("http://schemas. xm soap. or g/ wsdl / soap/ ",
"binding"));

Since al JWSDL implementations are required to support the WSDL specification-defined
extensions, the above SOAPBINnding example must work, exactly as shown, with any implementation.

There is one additional item, with respect to extensibility elements, which must be considered: How
are unexpected extenshility éements handled when they are encountered?

An “unexpected extensbility eement” is an extensibility eement for which there are no
seridizers/deseridizers registered. To handle this case, the ExtensionRegistry has two properties:
defaultSeridizer, and defaultDeseridizer.

The vaue of the defaultDeseridizer property isan ExtensionDeserializer that is to be used to
deseridize unexpected extenshility dements. Its default value is an instance of an
UnknownExtensionDeserializer. The UnknownExtensionDeserializer smply wrapsthe
org.w3c.dom.Element representing the extensibility dement in a new instance of an
UnknownExtensibilityElement. If the defaultDeseridizer property of an ExtensionRegistryis set to
nul |, an exception will be thrown when an unexpected extensbility eement is encountered.

The vaue of the defaultSeridizer property is an ExtensonSerializer thet isto be used to seridize
unexpected extensions that are encountered while writing out definitions. Its default vaueis an
instance of an UnknownExtensonSerializer. The UnknownExtensionSerializer smply seridizesthe
org.w3c.dom.Element that is wrapped in an ingance of an UnknownExtensibilityElement. If the
defaultSeridizer property of an ExtensionRegistry is set to null, an exception will ke thrown when an
unexpected extension is encountered.

Note: The terms “extensbility element” and “extension” are used interchangeably throughout this
document.

12. Extensibility Attributes

There are saverd methods defined on javax.wsdl.Part to enable the representation of extensibility
attributes (also called message-typing attributes) that may gppear on a <wsdl : par t > dement:
setExtensi onAttribute(QName name, QName value), getExtens onAttribute(QName name) , and
getExtensionAttributes(). Please see the API documentation for details on how to use these methods.
WSDLReader and WSDLWriter implementations are required to support the use of extengbility
attributeson <wsdl : par t > dements by employing these methods when creating or seridizing
javax.wsdl.Parts

Page12 of 13

JSR110: JWSDL Proposed Final Draft Verson 1.0

13. Dependencies

JWSDL requires Java 1.2 or greater, and the org.w3c.dom interfaces.

JWSDL aso depends on the javax.xml.namespace.QNameclass. It has been recognized by the various
concerned groups that a common representation of qualified names is necessary. Aswith JAX -RPC
[JAX -RPC], this specification temporarily employs the javax.xml.namespace.QName class because no
common QNamerepresentation is specified as of yet. It is expected that when a common QName
representation is defined, IWSDL will become dependent on the new definition.

14. References

[wsDL] http://mww.w3.org/TR/wsdl

[JAX -RPC] http://www.jcp.org/jsr/detail /101.jsp

Page13 of 13

