
JSR110: JWSDL Proposed Final Draft Version 1.0

Page 1 of 13

Java™ APIs for WSDL
(JWSDL)

Technical comments to: jsr110-eg-disc@groups.yahoo.com

JSR-110 under Java Community Process

Version 1.0

Editors:
Matthew J. Duftler (duftler@us.ibm.com)
Paul Fremantle (pzf@uk.ibm.com)

Copyright IBM Corporation 2002 – All rights reserved
November 10, 2002

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 2 of 13

1. Introduction ..3

2. Requirements................................3

3. Design Goals...4

4. Out of Scope ...4

5. Syntactic Validity..4

6. Factory Mechanism ..5

7. Reading Definitions...5

8. Navigating Definitions ..6

9. Writing Definitions...8

10. Programmatically Creating Definitions................................9

11. Extension Architecture ... 10

12. Extensibility Attributes... 12

13. Dependencies 13

14. References... 13

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 3 of 13

1. Introduction

The Web Services Description Language [WSDL] is an XML-based language for describing Web
services. WSDL allows developers to describe the inputs and outputs to an operation, the set of
operations that make up a service, the transport and protocol information needed to access the service,
and the endpoints via which the service is accessible.

Java™ APIs for WSDL [JWSDL] is an API for representing WSDL documents in Java. This
document, together with the API JavaDocs, is the formal specification for Java Specification Request
110 (JSR-110). JSR-110 is being developed under the Java Community Process (see
http://www.jcp.org/jsr/detail/110.jsp).

The expert group that developed this specification was composed of the following individuals:

Name Company E-mail
Rahul Bhargava Netscape Communications rahul_technical@yahoo.com
Tim Blake Oracle Timothy.Blake@oracle.com
Roberto Chinnici Sun Microsystems, Inc. roberto.chinnici@sun.com
John P Crupi Sun Microsystems, Inc. John.Crupi@Sun.COM
*Matthew J. Duftler IBM duftler@us.ibm.com
*Paul Fremantle IBM pzf@uk.ibm.com
Pierre Gauthier Nortel Networks yaic@nortelnetworks.com
Simon Horrell Developmentor simonh@develop.com
Oisin Hurley IONA Technologies PLC ohurley@iona.com
Tokuhisa Kadonaga Fujitsu Limited kado@sysrap.cs.fujitsu.co.jp
Chris Keller Silverstream Software ckeller@silverstream.com
Rajesh Raman InterKeel rraman@interkeel.com
Adi Sakala IONA Technologies PLC adi.sakala@iona.com
Krishna Sankar Cisco Systems ksankar@cisco.com
Miroslav Simek Systinet simek@idoox.com
Note: * indicates specification leads.

We borrowed much of the factory mechanism and the set/getFeature mechanism from the JAXP
specification, and we would like to acknowledge the JAXP authors for their quality work. We would
also like to thank the authors of the WSDL specification for helping us to work through some of the
issues that came up. And lastly, thanks to the many folks who adopted this work early, for their
feedback and suggestions.

2. Requirements

JWSDL is intended for use by developers of Web services tools and others who need to utilize WSDL
documents in Java.

JWSDL is designed to allow users to read, modify, write, create and re-organize WSDL documents in
memory. JWSDL is not designed to validate WSDL documents beyond syntactic validity. One use of
JWSDL is to develop a tool that validates WSDL semantically.

JWSDL is designed for use in WSDL editors and tools where a partial, incomplete or incorrect WSDL
document may require representation.

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 4 of 13

Although WSDL incorporates XML Schema expressions, JWSDL is not required to parse and
represent schema or schema types.

WSDL supports extensibility elements, which allow the language to be extended. JWSDL must fully
support extensibility elements.

3. Design Goals

The design goals of this JSR are as follows:

?? To specify APIs for reading, writing, creating, and modifying WSDL definitions.
?? To specify APIs for reading, writing, creating, and modifying extensibility elements (both

those defined in the WSDL specification, and those defined by client applications.)
?? To specify interfaces for representing the extensibility elements defined in the WSDL

specification.
?? To define a mechanism that allows reading, writing, and representing extensibility elements

for which no serializers and/or deserializers were defined.
?? To define a factory mechanism that allows JWSDL client code to be written independent of

any particular JWSDL implementation.
?? To specify APIs that are suitable for the building of WSDL tools and runtime infrastructure.
?? To define an API that supports WSDL-equivalence of read and written documents. That is, if

a document is read into memory, and then written back out, the two documents should be
semantically equivalent. XML Processing Instructions and XML Comments may be lost in
this process.

?? Specify the conformance criteria for JWSDL implementations.

This version of JWSDL supports WSDL v1.1, based on the submission to the W3C dated 15th March
2001 (http://www.w3.org/TR/2001/NOTE-wsdl-20010315). It is expected that changes in the WSDL
specification made by the W3C will be reflected in future versions of the JWSDL specification
through the workings of the Java Community Process.

4. Out of Scope

?? JWSDL does not provide support for querying/manipulating XML Schema. Any children of
<wsdl:types> elements are treated as extensibility elements.

?? JWSDL does not provide for validating WSDL documents beyond syntactic validity (see
Section 5). One likely use of JWSDL is to develop a tool that validates WSDL semantically.

5. Syntactic Validity

All the details of WSDL syntax are not explicitly defined in the current proposed WSDL
specification. This API specification expects the following behaviour from implementations.

Ordering
Implementations must support parsing WSDL that is in the correct order as specified by the WSDL
specification and the schema. Implementations may support reading incorrectly ordered definitions
without errors or exceptions. Implementations must write WSDL documents in the order specified by
the WSDL specification.

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 5 of 13

Extensibility Elements
The WSDL specification only allows extensibility elements under certain elements. Any
implementation of JWSDL must enforce that, and illegal extensibility elements will cause an
exception. JWSDL also defines the type of each extensibility element through the registration process,
and so extensibility elements should only be recognized within the scope in which they are defined to
the JWSDL implementation. If an extensibility element that is registered in one place (e.g. Port) is
found in another where it is not registered (e.g. Binding), then it should be considered an unknown
extensibility element and treated as such.

Referential Integrity
Properly formed WSDL documents should be complete - if there is a reference to an element, then
that element should exist. However, during tooling and creation, it may be necessary to manage
incomplete WSDL documents. Therefore, implementations should not enforce referential integrity.

6. Factory Mechanism

One of the goals of this JSR is to allow applications to write JWSDL client code, without requiring
specific knowledge of the particular implementation being used (with the obvious exception of
implementation-provided extensions).

An application first obtains a WSDLFactory instance via the static newInstance method of
WSDLFactory. The newInstance method uses the following ordered lookup procedure to determine
the WSDLFactory implementation class to load:

?? Check the javax.wsdl.factory.WSDLFactory system property.
?? Check the lib/wsdl.properties file in the JRE directory. The key will have the same name as

the above system property.
?? Use the platform default value (will vary with implementations).

Note: There is also a static newInstance method that takes the fully-qualified class name of a factory
implementation as an argument, in which case the above procedure is not employed.

Once a WSDLFactory instance is obtained, the methods newDefinition, newWSDLReader,
newWSDLWriter, or newPopulatedExtensionRegistry can be invoked to create the desired objects.

The next several sections contain examples of using these methods to read, write, and
programmatically create WSDL definitions.

7. Reading Definitions

An application invokes the newWSDLReader method on a WSDLFactory to obtain a WSDLReader.
Once a WSDLReader is obtained, one of the various readWSDL methods can be used to construct a
Definition object from a WSDL document. It is recommended that WSDLReader implementations
employ JAXP in the parsing of WSDL documents, so any JAXP-compliant XML parser can be used.

After obtaining a WSDLReader instance, and before invoking readWSDL, any desired features should
be enabled or disabled by invoking the setFeature method. All feature names must be fully-qualified,
Java package style. All names starting with javax.wsdl. are reserved for features defined by the
JWSDL specification. It is recommended that implementation-specific features be fully-qualified to
match the package name of that implementation. For example: com.abc.featureName.

The minimum features that must be supported by any implementation are:

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 6 of 13

Name Description Default Value

javax.wsdl.verbose If set to true, status messages
will be displayed.

true

javax.wsdl.importDocuments If set to true, imported
WSDL documents will be
retrieved and processed.

true

If the javax.wsdl.verbose feature is enabled, status messages will be sent to the standard output stream
(i.e. System.out). It is enabled by default.

If the javax.wsdl.importDocuments feature is enabled, imported documents will be retrieved and
processed. It is enabled by default. When imported documents are retrieved and processed, the
imported items can be returned by queries on the importing Definition. That is, when querying a
Definition, or some item contained in a Definition, the returned item may be from a different
Definition, if other Definitions have been imported. Imported Definitions may be navigated to by
invoking the getImports method on the importing Definition, and then querying the definition
property of the returned javax.wsdl.Import objects (will always be null if the
javax.wsdl.importDocuments feature was disabled). Within any particular Definition graph, individual
items must only exist once. For example, if multiple Input and Output objects refer to the same
Message, all those references must refer to the same Message instance.

JWSDL’s import logic allows any type of document to be imported. However, JWSDL is only
capable of retrieving and processing WSDL documents. If another type of document is imported, such
as an XML Schema document, a javax.wsdl.Import object will still be created to represent that import;
the definition property of that Import object will simply be null.

The following is an example of how to use a WSDLReader to construct a Definition that represents the
WSDL file named sample.wsdl:

import javax.wsdl.*;
import javax.wsdl.factory.*;
import javax.wsdl.xml.*;
...
 try
 {
 WSDLFactory factory = WSDLFactory.newInstance();
 WSDLReader reader = factory.newWSDLReader();

 reader.setFeature(“javax.wsdl.verbose”, true);
 reader.setFeature(“javax.wsdl.importDocuments”, true);

 Definition def = reader.readWSDL(null, "sample.wsdl");
 }
 catch (WSDLException e)
 {
 e.printStackTrace();
 }

The first argument to readWSDL is an optional context URI, which can be used to resolve the second
argument (also a URI), if the second argument is relative.

8. Navigating Definitions

Let’s assume that the sample.wsdl file referred to in the previous section contains the following:

<?xml version="1.0"?>

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 7 of 13

<definitions name="StockQuoteService"
 targetNamespace="urn:xmltoday-delayed-quotes"
 xmlns:tns="urn:xmltoday-delayed-quotes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

 <message name="getQuoteInput">
 <part name="symbol" type="xsd:string"/>
 </message>

 <message name="getQuoteOutput">
 <part name="quote" type="xsd:float"/>
 </message>

 <portType name="GetQuote">
 <operation name="getQuote">
 <input message="tns:getQuoteInput"/>
 <output message="tns:getQuoteOutput"/>
 </operation>
 </portType>

 <binding name="GetQuoteSoapBinding" type="tns:GetQuote">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getQuote">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:xmltoday-delayed-quotes"/>
 </input>
 <output>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:xmltoday-delayed-quotes"/>
 </output>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <port name="StockQuotePort" binding="tns:GetQuoteSoapBinding">
 <soap:address location="http://www.fremantle.org/soap/servlet/rpcrouter"/>
 </port>
 </service>

</definitions>

The following is an example of navigating the Definition to determine what operations are defined for
a particular service:

 Definition def = reader.readWSDL(null, "sample.wsdl");
 String tns = "urn:xmltoday-delayed-quotes";
 Service service = def.getService(new QName(tns, "StockQuoteService"));
 Port port = service.getPort("StockQuotePort");
 Binding binding = port.getBinding();
 PortType portType = binding.getPortType();
 List operations = portType.getOperations();
 Iterator opIterator = operations.iterator();

 while (opIterator.hasNext())
 {
 Operation operation = (Operation)opIterator.next();

 if (!operation.isUndefined())
 {

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 8 of 13

 System.out.println(operation.getName());
 }
 }

Just “getQuote” should be displayed.

The following is an example of navigating the Definition to determine what messages are defined in a
WSDL definition:

 Definition def = reader.readWSDL(null, "sample.wsdl");
 Map messages = def.getMessages();
 Iterator msgIterator = messages.values().iterator();

 while (msgIterator.hasNext())
 {
 Message msg = (Message)msgIterator.next();

 if (!msg.isUndefined())
 {
 System.out.println(msg.getQName());
 }
 }

Both the getQuoteInput and getQuoteOutput messages should be listed, within the urn:xmltoday-
delayed-quotes namespace.

The “undefined” property defined on the operation and message objects indicates whether the
definition for the particular item was found or not. For example: If, within a WSDL document, an
<wsdl:input> element refers to a message whose definition cannot be found, a placeholder message
object will be created, and its undefined property will be set to true. A similar property also exists on
PortType and Binding. WSDLWriters are required to examine this property when determining which
items to write out. The default value for the undefined property of Message, Operation, PortType, and
Binding is true; when creating these items programmatically, the property must be set to false.

9. Writing Definitions

An application invokes the newWSDLWriter method on a WSDLFactory to obtain a WSDLWriter.
Once a WSDLWriter is obtained, one of the writeWSDL methods can be employed to write a
Definition out as a WSDL document to either a java.io.Writer, or a java.io.OutputStream. All
WSDLWriter implementations must examine the undefined property of Message, Operation,
PortType, and Binding objects to determine which items should be written out. See the previous
section for more information on the undefined property.

WSDLWriters are not required to be capable of writing out Definitions created by other JWSDL
implementations (although some may have this capability.)

After obtaining a WSDLWriter instance, and before invoking writeWSDL, any desired features should
be enabled or disabled by invoking the setFeature method. There are no minimum features that must
be supported by implementations.

The following is an example of how to use a WSDLWriter to write a Definition to System.out:

 WSDLFactory factory = WSDLFactory.newInstance();
 WSDLWriter writer = factory.newWSDLWriter();

 writer.writeWSDL(def, System.out);

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 9 of 13

If the definition was constructed from the sample.wsdl file, the output should look basically the same
as the contents of that file. The formatting of the file may be different, but the elements and attributes
will be the same (although they may not appear in the same order).

There is also a getDocument method defined on WSDLWriter. This method can be used to generate an
org.w3c.dom.Document from the specified Definition.

10. Programmatically Creating Definitions

An application invokes the newDefinition method on a WSDLFactory to obtain a new instance of a
javax.wsdl.Definition. Once that definition is obtained, it serves as a factory that can be used to create
the rest of the items that will make up the full definition. This specification does not mandate that
items be created by the Definition they will eventually be added to. Nor does this specification
mandate that any item have precisely one parent Definition (that is, implementations may allow items
to be added to more than one Definition.) A particular implementation may choose to require items to
be created by the Definition they will be added to, and/or to require that an item be added to only one
Definition. If either of these restrictions is imposed by an implementation, it should be clearly spelled
out in that implementation’s documentation.

The following is an example that programmatically constructs a definition containing two messages
and a portType with one operation that uses those two messages:

 WSDLFactory factory = WSDLFactory.newInstance();
 Definition def = factory.newDefinition();
 String tns = "urn:xmltoday-delayed-quotes";
 String xsd = "http://www.w3.org/2001/XMLSchema";
 Part part1 = def.createPart();
 Part part2 = def.createPart();
 Message msg1 = def.createMessage();
 Message msg2 = def.createMessage();
 Input input = def.createInput();
 Output output = def.createOutput();
 Operation operation = def.createOperation();
 PortType portType = def.createPortType();

 def.setQName(new QName(tns, "StockQuoteService"));
 def.setTargetNamespace(tns);
 def.addNamespace("tns", tns);
 def.addNamespace("xsd", xsd);

 part1.setName("symbol");
 part1.setTypeName(new QName(xsd, "string"));
 msg1.setQName(new QName(tns, "getQuoteInput"));
 msg1.addPart(part1);
 msg1.setUndefined(false);
 def.addMessage(msg1);

 part2.setName("quote");
 part2.setTypeName(new QName(xsd, "float"));
 msg2.setQName(new QName(tns, "getQuoteOutput"));
 msg2.addPart(part2);
 msg2.setUndefined(false);
 def.addMessage(msg2);

 input.setMessage(msg1);
 output.setMessage(msg2);
 operation.setName("getQuote");
 operation.setInput(input);
 operation.setOutput(output);
 operation.setUndefined(false);
 portType.setQName(new QName(tns, "GetQuote"));
 portType.addOperation(operation);

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 10 of 13

 portType.setUndefined(false);
 def.addPortType(portType);

The items created in the above example should match those read from the sample.wsdl file in the
earlier examples.

11. Extension Architecture

The extension architecture is designed to allow an application to perform the same basic functions
with extensibility elements, as with native WSDL elements. That is, applications are able to read
extensions into memory, write extensions back out, query in -memory extensions, and
programmatically create extensions. This is made possible by a combination of interfaces and classes:

?? The ExtensibilityElement interface is used to represent extensions in memory.
?? The ExtensionDeserializer interface is used to read extensions into memory.
?? The ExtensionSerializer interface is used to write extensions out.
?? The ExtensionRegistry class is used to hold the configuration information necessary to

determine which serializers and deserializers are to be used for handling which extensions.

All JWSDL implementations are required to support the WSDL specification-defined extensions.
That is, all JWSDL implementations are required to support the “SOAP”, “HTTP”, and “MIME”
extensions. Implementations of the ExtensibilityElement interface are provided for each of the WSDL
specification-defined extensions in javax.wsdl.extensions.soap.*, javax.wsdl.extensions.http.*, and
javax.wsdl.extensions.mime.*. In order to provide support for the specification-defined extensions,
implementations are required to implement the newPopulatedExtensionRegistry method of
WSDLFactory. This method must return an instance of an ExtensionRegistry with
serializers/deserializers registered, and Java types mapped, for all the WSDL specification-defined
extensions. The particular serializers and deserializers that each implementation will use to handle
these specification-defined extensions are not mandated by this document.

An ExtensionRegistry can be set/retrieved on/from a Definition, and set/retrieved on/from a
WSDLReader. To add support for additional extensions, an application must configure the
ExtensionRegistry. If the ExtensionRegistry is being configured for the purpose of reading a document
that contains extensibility elements, the configured ExtensionRegistry should be set on the
WSDLReader prior to reading the document. If an ExtensionRegistry is set on the WSDLReader, the
Definition constructed by that WSDLReader will have that ExtensionRegistry set as the value of its
extensionRegistry property. In other words, whatever value is assigned to the extensionRegistry
property of a WSDLReader will be assigned as the value of the extensionRegistry property of all
Definitions constructed by that WSDLReader.

If the ExtensionRegistry is being configured for the purpose of writing out a programmatically
constructed definition that contains extensions, the configured ExtensionRegistry must be set as the
value of the extensionRegistry property of the Definition prior to handing it off to a WSDLWriter.

There are three different types of configuration that can be done on an ExtensionRegistry:

?? Registering a deserializer for a particular extension.
?? Registering a serializer for a particular extension.
?? Mapping an implementation class to a particular extension.

In most cases, all three types of configuration will be done for every extension. Every JWSDL
implementation is required to do this for all the WSDL specification-defined extensions, when the
newPopulatedExtensionRegistry method is invoked. If an ExtensionRegistry is retrieved by simply

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 11 of 13

invoking ExtensionRegistry’s zero-argument constructor (i.e. new ExtensionRegistry()), it will not
have serializers, deserializers, or Java implementation classes mapped for any extensions.

The following examples are concerning a fictitious extensibility element named <abc:myExt>, where
the prefix “abc” is associated with the namespace URI “urn:def”. The Java class created to represent
this extension in memory is called ghi.Abc, and it implements the ExtensibilityElement interface (as it
is required to do, in order to be considered an extension). The <abc:myExt> extensibility element may
only exist as an immediate child of a <wsdl:service> element. There is a ghi.AbcDeserializer class
which implements the ExtensionDeserializer interface, and is capable of reading an <abc:myExt>
element, and populating a new instance of a ghi.Abc with the relevant information. There is also a
ghi.AbcSerializer class which implements the ExtensionSerializer interface, and is capable of
querying an instance of a ghi.Abc and serializing the relevant information in the form of a
<abc:myExt> extensibility element.

 // Create a new ExtensionRegistry.
 ExtensionRegistry extReg = new ExtensionRegistry();
 // Register the deserializer.
 extReg.registerDeserializer(Service.class,
 new QName("urn:def", "myExt"),
 new ghi.AbcDeserializer());
 // Register the serializer.
 extReg.registerSerializer(Service.class,
 new QName("urn:def", "myExt"),
 new ghi.AbcSerializer());
 // Map the implementation class to the extension type.
 extReg.mapExtensionTypes(Service.class,
 new QName("urn:def", "myExt"),,
 ghi.Abc.class);

Note that in all three of the above ExtensionRegistry method invocations, the Service.class argument
indicates that the extension can exist as a child of a <wsdl:service> element.

For every WSDL element capable of containing extensibility elements, its corresponding javax.wsdl.*
interface has two methods to handle the extensions: addExtensibilityElement, and
getExtensibilityElements. The addExtensibilityElement method takes an instance of an
ExtensibilityElement, and the getExtensibilityElements method returns a List whose items are of type
ExtensibilityElement.

If a WSDL document containing a <wsdl:service> element was read in, and the <wsdl:service>
element contained an <abc:myExt> element as an immediate child, the list returned from an
invocation of the getExtensibilityElements method on that Service object would contain one item: a
instance of a ghi.Abc.

The following is an example of retrieving this ghi.Abc object:

 Definition def = ...
 Service svc = def.getService(...);
 List extElements = svc.getExtensibilityElements();

 ghi.Abc = (ghi.Abc)extElements.get(0);

The following is an example of programmatically creating an instance of a ghi.Abc, and adding it to a
Service object:

 Service svc = def.createService();
 ghi.Abc anExt = (ghi.Abc)extReg.createExtension(Service.class,
 new QName("urn:def", "myExt"));

 // Now configure the Abc instance…

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 12 of 13

 // Then add it to the Service object.
 svc.addExtensibilityElement(anExt);

The createExtension method is used to programmatically create extensions so that applications can
create extensions without knowing the implementing class. This is particularly relevant when dealing
with extensions that have well-known interfaces to represent them, such as the WSDL specification-
defined extensions.

The following is an example of programmatically creating an instance of a class which implements
the SOAPBinding interface, without knowing the implementing class:

 SOAPBinding soapBinding =
 (SOAPBinding)extReg.createExtension(Binding.class,
 new QName("http://schemas.xmlsoap.org/wsdl/soap/",
 "binding"));

Since all JWSDL implementations are required to support the WSDL specification-defined
extensions, the above SOAPBinding example must work, exactly as shown, with any implementation.

There is one additional item, with respect to extensibility elements, which must be considered: How
are unexpected extensibility elements handled when they are encountered?

An “unexpected extensibility element” is an extensibility element for which there are no
serializers/deserializers registered. To handle this case, the ExtensionRegistry has two properties:
defaultSerializer, and defaultDeserializer.

The value of the defaultDeserializer property is an ExtensionDeserializer that is to be used to
deserialize unexpected extensibility elements. Its default value is an instance of an
UnknownExtensionDeserializer. The UnknownExtensionDeserializer simply wraps the
org.w3c.dom.Element representing the extensibility element in a new instance of an
UnknownExtensibilityElement. If the defaultDeserializer property of an ExtensionRegistry is set to
null, an exception will be thrown when an unexpected extensibility element is encountered.

The value of the defaultSerializer property is an ExtensionSerializer that is to be used to serialize
unexpected extensions that are encountered while writing out definitions. Its default value is an
instance of an UnknownExtensionSerializer. The UnknownExtensionSerializer simply serializes the
org.w3c.dom.Element that is wrapped in an instance of an UnknownExtensibilityElement. If the
defaultSerializer property of an ExtensionRegistry is set to null, an exception will be thrown when an
unexpected extension is encountered.

Note: The terms “extensibility element” and “extension” are used interchangeably throughout this
document.

12. Extensibility Attributes

There are several methods defined on javax.wsdl.Part to enable the representation of extensibility
attributes (also called message-typing attributes) that may appear on a <wsdl:part> element:
setExtensionAttribute(QName name, QName value), getExtensionAttribute(QName name) , and
getExtensionAttributes(). Please see the API documentation for details on how to use these methods.
WSDLReader and WSDLWriter implementations are required to support the use of extensibility
attributes on <wsdl:part> elements by employing these methods when creating or serializing
javax.wsdl.Parts.

JSR110: JWSDL Proposed Final Draft Version 1.0

Page 13 of 13

13. Dependencies

JWSDL requires Java 1.2 or greater, and the org.w3c.dom interfaces.

JWSDL also depends on the javax.xml.namespace.QName class. It has been recognized by the various
concerned groups that a common representation of qualified names is necessary. As with JAX -RPC
[JAX-RPC], this specification temporarily employs the javax.xml.namespace.QName class because no
common QName representation is specified as of yet. It is expected that when a common QName
representation is defined, JWSDL will become dependent on the new definition.

14. References

[WSDL] http://www.w3.org/TR/wsdl

[JAX-RPC] http://www.jcp.org/jsr/detail/101.jsp

